If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3r^2+6r-7=0
a = 3; b = 6; c = -7;
Δ = b2-4ac
Δ = 62-4·3·(-7)
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{30}}{2*3}=\frac{-6-2\sqrt{30}}{6} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{30}}{2*3}=\frac{-6+2\sqrt{30}}{6} $
| .25x+.05x=48 | | .3x=48 | | 5(4.2+0.4x)-8=2x+13 | | 5x+6(2x+3)=154 | | 0.5p-5=p | | 5(w-2)=7w-14 | | x*1.15x=210 | | 7n^2+2n-8=0 | | 4(v+5)-6v=18 | | .5(x+12)+2=1.25(x+8)-9.5 | | 25=4w+1 | | 18=9-3u | | 16x^2=300 | | (4^x)^x+1=16 | | 3x+5(2x+7)=113 | | 8(2x-2)=32 | | 8(2x-2)=32 | | 65=1/5(325-4e) | | X^2-8x+7=180 | | 8x+4=76.8 | | 5x-12x-18=36 | | x/3-9.2=3.5 | | 2(4y-3)=-12 | | 10/g=8 | | 1-8/3x=-14 | | y/8=0.6 | | 26=5t-8 | | 8.6=5p-4p+2.8 | | 4^(2x-4)=40 | | x/6=4/9 | | 4x/3+2/9=7/6-x/12 | | 7y-1=8y-6 |